New Entropy Estimators with Smaller Root Mean Squared Error
نویسندگان
چکیده
منابع مشابه
Root Mean Squared Error
• Predictive Accuracy Measures. These measures evaluate how close the recommender system came to predicting actual rating/utility values. • Classification Accuracy Measures. These measures evaluate the frequency with which a recommender system makes correct/incorrect decisions regarding items. • Rank Accuracy Measures. These measures evaluate the correctness of the ordering of items performed b...
متن کاملDevelopment of a Root Mean Squared Error Flaw Sizing Criterion
This paper reviews the development of a root mean squared error (RMS) flaw sizing criterion. The effect of using an RMS error criterion for the sizing performance of the PISC II [1-3] inspection teams is investigated. A crucial part of establishing an RMS error sizing criterion is the decomposition of the components in the RMS error into the sum of the squares of the mean error, the standard er...
متن کاملCompetitive Mean-Squared Error Beamforming
Beamforming methods are used extensively in a variety of different areas, where one of their main goals is to estimate the source signal amplitude s(t) from the array observations y(t) = s(t)a + i(t) + e(t), t = 1,2,..., where a is the steering vector, i(t) is the interference, and e(t) is a Gaussian noise vector [1, 2]. To estimate s(t), we may use a beamformer with weights w so that s(t) = w*...
متن کاملOptimal Mean Squared Error Imaging
The problem of forming images that are optimal with respect to a Mean Square Error (MSE) criterion, based on nite data, is considered. First, it is shown that the MSE criterion is consistent with the general goal of classifying images, in that decreasing the MSE guarantees a decrease in the probability of misclassifying an image. The problem of choosing sampling locations for image formation th...
متن کاملMean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data
We consider the nonparametric regression model with long memory data that are not necessarily Gaussian and provide an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators. We show this MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Modern Applied Statistical Methods
سال: 2015
ISSN: 1538-9472
DOI: 10.22237/jmasm/1446350940